Friday, 22 June 2012

Computer Background Wallpapers

Computer Background Wallpapers Biography
In statistics, the Behrens–Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.One difficulty with discussing the Behrens–Fisher problem and proposed solutions, is that there are many different interpretations of what is meant by "the Behrens–Fisher problem". These differences involve not only what is counted as being a relevant solution, but even the basic statement of the context being considered.samples from two populations which both come from the same location-scale family of distributions. The scale parameters are assumed to be unknown and not necessarily equal, and the problem is to assess whether the location parameters can reasonably be treated as equal. Lehmann states that "the Behrens–Fisher problem" is used both for this general form of model when the family of distributions is arbitrary and for when the restriction to a normal distribution is made. While Lehmann discusses a number of approaches to the more general problem, mainly based on nonparametrics, most other sources appear to use "the Behrens–Fisher problem" to refer only to the case where the distribution is assumed to be normal, most of this article makes this assumption.
Solutions to the Behrens–Fisher problem have been presented that make use of either a classical or a Bayesian inference point of view and either solution would be notionally invalid judged from the other point of view. If consideration is restricted to classical statistical inference only, it is possible to seek solutions to the inference problem that are simple to apply in a practical sense, giving preference to this simplicity over any inaccuracy in the corresponding probability statements. Where exactness of the significance levels of statistical tests is required, there may be an additional requirement that the procedure should make maximum use of the statistical information in the dataset. It is well-known that an exact test can be gained by randomly discarding data from the larger dataset until the sample sizes are equal, assembling data in pairs and taking differences, and then using an ordinary t-test to test for the mean-difference being zero: clearly this would not be "optimal" in any sense.
Ronald Fisher in 1935 introduced fiducial inference in order to apply it to this problem. He referred to an earlier paper by W. V. Behrens from 1929. Behrens and Fisher proposed to find the probability distribution of where re the two sample means, and s1 and s2 are their standard deviations. Fisher approximated the distribution of this by ignoring the random variation of the relative sizes of the standard deviations,This is a random variable. A t distribution with a random number of degrees of freedom does not exist. Nevertheless, the Behrens-Fisher T can be compared with a corresponding quantile of Student's t distribution with these estimated number of degrees of freedom, which is generally non-integer. In this way, the boundary between acceptance and rejection region of the test statistic T is calculated based on the empirical variances in a way that is a smooth function of these.
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Computer Background Wallpapers
Photoshop Tutorial: Custom Glowing Abstract Desktop Wallpaper 2.0 [2011]
Quicktip: Choosing Desktop Wallpaper

No comments:

Post a Comment